Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 16546-16566, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36301703

RESUMO

The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Ecossistema , Biodegradação Ambiental , Plantas , Bactérias
2.
Innovation (Camb) ; 2(4): 100180, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34877561

RESUMO

Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.

3.
Chemosphere ; 55(11): 1477-84, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15099727

RESUMO

The reductive dechlorination and behaviour of (14)C-hexachlorobenzene (HCB) was investigated in an arable soil. The activity of the native anaerobic microbial communities could be induced by saturating the soil with water. Under these conditions high rates of dechlorination were observed. After 20 weeks of incubation only 1% of the applied 14C-HCB could be detected in the fraction of extractable residues. Additional organic substances, like wheat straw and lucerne straw, however considerably delayed and reduced the dechlorination process in the soil. The decline of HCB was not only caused by dechlorination but also by the formation of non-extractable residues, whereby their amounts varied with time depending on the experimental conditions. Several dechlorination products were detected, indicating the following main HCB transformation pathway: HCB --> PCB --> 1,2,3,5-TeCB --> 1,3,5-TCB --> 1,3-DCB, with 1,3,5-TCB as main intermediate dechlorination product. The other TeCB-, TCB- and DCB-isomers were also detected in low amounts, showing the presence of more than one dechlorination pathway. Since the methane production rates were lowest when the dechlorination rates were highest, it can be assumed that methanogenic bacteria were not involved in the dechlorination process of HCB. The established 14C-mass balances show, that with increasing dechlorination and incubation times, the 14C-recoveries decreased.


Assuntos
Bactérias/metabolismo , Hexaclorobenzeno/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Radioisótopos de Carbono , Cloretos , Cromatografia Gasosa , Cinética , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...